Generating Synthetic T2*-Weighted Gradient Echo Images of the Knee with an Open-source Deep Learning Model
A large-scale multicenter breast cancer DCE-MRI benchmark dataset with expert segmentations
Revolutionising Osseous Biopsy: The Impact of Artificial Intelligence in the Era of Personalised Medicine
Development of a scoring system to predict endovascular crossing of femoropopliteal artery chronic total occlusions: the Endo Vascular CROSSing score for Chronic Total Occlusions (EVACROSS-CTO)
Large Language Model Ability to Translate CT and MRI Free-text Radiology Reports into Multiple Languages
ESR Essentials: how to get to valuable radiology AI: the role of early health technology assessment—practice recommendations by the European Society of Medical Imaging Informatics
ESR Essentials: radiomics - practice recommendations by the European Society of Medical Imaging Informatics
The effect of ultrasound image pre-processing on radiomics feature quality: a study on shoulder ultrasound
Machine Learning and Metabolomics Predict Mesenchymal Stem Cell Osteogenic Differentiation in 2D and 3D Cultures
Diagnostic performance of radiomics in prediction of Ki-67 index status in non-small cell lung cancer: a systematic review and meta-analysis -Journal of Medical Imaging and Radiation Sciences
Machine learning for the prediction of anastomotic leakage following esophageal cancer resection -Academic Radiology
Editorial on reporting checklists - Diagnostic and Interventional Radiology
Creation of a Radiomics Atlas Dataset of Abdominal and Pelvic CT (RADAPT) - Journal of Imaging Informatics in Medicine
CLAIM guidelines 2024 Update - Radiology: Artificial Intelligence
Review with international authors on bias for artificial intelligence in medical imaging - Diagnostic and Interventional Radiology
Artificial Intelligence-driven radiomics: developing valuable radiomics signatures with the use of artificial intelligence - BJR|Artificial Intelligence
Radiology staff perspectives are a key determinant for successful AI adoption in clinical practice - European Journal of Radiology
Klontzas ME, Ri M, Koltsakis E, et al. 2024. “Prediction of anastomotic leakage in esophageal cancer surgery: a multimodal machine learning model integrating imaging and clinical data” Academic Radiology. Link
Kocak B, Ponsiglione A, Stanzione A, et al. 2024. “Bias in artificial intelligence for medical imaging: fundamentals, detection, avoidance, mitigation, challenges, ethics, and prospects” Diagnostic and Interventional Radiology, Link
Klontzas ME 2024. “Reporting checklists as compulsory supplements to artificial intelligence manuscript submissions” Diagnostic and Interventional Radiology, Link
Garrucho L, Reidel C-A, Kushibar K et al. 2024. “MAMA-MIA: A Large-Scale Multi-Center Breast Cancer DCE-MRI Benchmark Dataset with Expert Segmentations” arXiv, arXiv:2406.13844. Link
Matthaiou N, Klontzas ME, Kakkos GA, et al. 2024 "Utility of Dual-Energy Computed Tomography in lesion characterization and treatment planning for peripheral Chronic Total Occlusions: A comprehensive analysis of crossing difficulty", European Journal of Radiology Link
Tejani A.*, Klontzas M.E.*, Gatti A.A.*, Mongan J., Moy L., Kahn C.E. Jr, & CLAIM 2024 Update Panel, “Checklist for Artificial Intelligence in Medical Imaging (CLAIM): 2024 Update”, Radiology: Artif Intell, 6:e240300, 2024. *co-first authorship
Klontzas M.E., Ponsiglione A., Cuocolo R. 2024 "Evaluation of AI-assisted medical image reconstruction: More than meets the eye?" European Radiology Link
Klontzas M.E. ”Radiomics feature reproducibility: the elephant in the room”. Eur J Radiol, 175, 111430, 2024
Kapetanou E., Malamas S., Leventis D., Karantanas A.H. and Klontzas M.E., “Developing a Radiomics Atlas Dataset of normal Abdominal and Pelvic computed Tomography (RADAPT)”, J Imaging Inform Med, 2024
Albano D., Mallardi C.,..., Klontzas M.E.,...,Messina C. “How young radiologists use contrast media and manage adverse reactions: an international survey”, Insights Imaging, 15(1):92, 2024
Klontzas M.E., Kalarakis G., Koltsakis E., Papathomas T., Karantanas A.H.. Tzortzakakis A. ”Convolutional neural networks for the differentiation between benign and malignant
renal tumors with a multicenter international computed tomography dataset”. Insights Imaging, 15(1):26, 2024
Kocak B., Akinci D’Antonoli T.,..., Klontzas M.E.,...,Cuocolo R. “METhodological RadiomICs Score (METRICS): a quality scoring tool for radiomics research endorsed by EuSoMII”, Insights Imaging, 171:111313, 2024
Vrettos K., Koltsakis E., Zibis A.H., Karantanas A.H. and Klontzas M.E., “Generative adversarial networks for spine imaging: A critical review of current applications”, Eur J Radiol, 171:111313, 2024
Pimenta M., Vassalou E.E., Klontzas M.E., Dimitri-Pinheiro S., Ramos S., and Karantanas A.H., “Ultrasound-guided hydrodilatation for adhesive capsulitis: capsule- preserving versus capsule-rupturing technique.”, Skeletal Radiol, 53(2):253-261, 2024
Perysinakis I., Klontzas M.E., Psaroudakis I.G., Karantanas A.H., de Bree E., Vassalou E.E.. ”Performance of Ultrasonography in the Diagnosis of Acute Colonic Diverticulitis”. J Ultrasound Med, 43(1):45-56, 2024
Kranioti E.F., Spanakis K., Flouri D.E., Klontzas M.E., Karantanas A.H., “PMCT in the investigation of homicides”, Clin Radiol, 78(11):832-838, 2023
Klontzas M.E., Triantafyllou M., Leventis D., Koltsakis E., Kalarakis G., Tzortzakakis A., Karantanas A.H., “Radiomics analysis for multiple myeloma: a systematic review with radiomics quality scoring”, Diagnostics, 13(12):2021, 2023
Tejani A.S., Klontzas M.E., Gatti A.A., Mongan J., Moy L. Park S.H., Kahn C.E. Jr. ”Updating the checklist for artificial intelligence in medical imaging (CLAIM) for reporting AI research”. Nat Machine Intell, 5: 950-951, 2023
Klontzas M.E., Leventis D., Spanakis K., Karantanas A.H., Kranioti E.F., “Post- mortem CT radiomics for the prediction of time since death”, Eur Radiol, 33(11):8387- 8395, 2023
Akinci D’Antonoli T., Stanzione A., Bluethgen C., Vernuccio F., Ugga L., Klontzas M.E., Cuocollo R., Cannella R., Kocak B. ”RLarge language models in radiology: fundamentals, applications, ethical considerations, risks, and future directions”. Diagn Interv Radiol, Online ahead of print, 2023
Pimenta M., Vassalou E.E., Cardoso-Marinho B., Klontzas M.E., Dimitri S., Karantanas A.H. “The role of MRI and ultrasonography in diagnosis and treatment of glenohumeral joint adhesive capsulitis”, Med J Rheumatol, 34(1):7-15, 2023
Dimitri-Pinheiro S., Klontzas M.E., Vassalou E.E., Pimenta M., Soares R., Karantanas A.H. ”Long-term outcomes of ultrasound-guided hydrodistension for adhesive capsulitis: a prospective observational study”, Tomography, 2023
Akinci D’Antonoli T., Cavallo A.U., Vernuccio F., Stanzione A. Klontzas M.E., Cannella R., Ugga L., Baran A. et al. ”Reproducibility of radiomics quality score: an intra- and inter-rater reliability study”. Eur Radiol, Online ahead of print, 2023
Klontzas M.E., Koltsakis E., Kalarakis G., Trpkov K., Papathomas T., Karantanas A.H.. Tzortzakakis A. ”Machine Learning Integrating 99mTc Sestamibi SPECT/CT and Radiomics Data Achieves Optimal Characterization of Renal Oncocytic Tumors”. Cancers, 15:3553, 2023
Klontzas M.E., Vassalou E.E., Spanakis K., Meurer F., Woerlter K., Zibis A.H., Marias K., Karantanas A.H.. ”Deep learning enables the differentiation between early and late stages of hip avascular necrosis”. Eur Radiol, Online ahead of print, 2023
Klontzas M.E., Koltsakis E., Kalarakis G., Trpkov K., Papathomas T., Sun N., Walch A., Karantanas A.H.. Tzortzakakis A. ”A pilot radiometabolomics integration study for the characterization of renal oncocytic neoplasia”. Sci Rep, 13:12594, 2023
McKenney A.S., Klontzas M.E., Wattamwar K., Hoegger M.J. “Noteworthy: taking notes for radiology training and beyond”, RadioGraphics, 43(3):e220184, 2023
Triantafyllou M., Klontzas M.E., Koltsakis E., Papakosta V., Spanakis K. Karantanas A.H. ”Radiomics for the detection of active sacroiliitis on MR imaging”. Diagnostics, 13:2587, 2023
Klontzas M.E., Gatti A.A., Tejani A.S., Kahn C.E. Jr. ”AI guidelines: how to select the best one for your research”. Radiol Artif Intell, 5(3):e230055, 2023
Klontzas M.E., Vassalou E.E., Zibis A.H., Karantanas A.H.. ”Imaging of anatomical variants around the hip”. Semin Musculoskelet Radiol, 27(2): 182-196, 2023
Cannella R., Venuccio F., Klontzas M.E., Ponsiglione A., Petrash E., Ugga L., Pinto Dos Santos D., Cuocolo R., “Systematic review with radiomics quality score of cholangiocarcinoma: an EuSoMII Radiomics Auditing Group Initiative.”, Insights Imaging,14:21, 2023
Dimitri-Pinheiro S., Klontzas M.E.,Pimenta M., Vassalou E.E., Soares R., and Karantanas A.H., “Ultrasound-guided hydrodistension for adhesive capsulitis: a longitudinal study
on the effect of diabetes on treatment outcomes.”, Skeletal Radiol, Online ahead of print, 2022
Pimenta M., Vassalou E.E., Dimitri-Pinheiro S., Klontzas M.E., Ramos S., and Karantanas A.H., “Ultrasound-Guided Hydrodistension for Adhesive Capsulitis: Is There any Adjunct Effect of Immediate Post-Procedural Manipulation over Instructed Physical Therapy?.”, J Ultrasound Med, Online ahead of print, 2022
Klontzas M.E., Kearns C., Sheikhbahaei S., and Cornejo P., “Anti-NMDA-Receptor Encephalitis.”, RadioGraphics, 42: E199-E200, 2022
Kontopodis N, Klontzas M.E.,Tzirakis K., Charalambous S., Marias K., Tsetis K, Karantanas A.H., Ioannou C.V. ”Prediction of abdominal aortic aneurysm growth by artificial intelligence taking into account clinical, biologic, morphologic, and biomechanical variables”. Vascular, online ahead of print,doi: 10.1177/17085381221077821, 2022
Klontzas M.E., Karantanas A.H.. ”Research in Musculoskeletal Radiology: Setting Goals and Strategic Directions”. Semin Musculoskelet Radiol, 26(3): 354-358, 2022
Klontzas M.E., Vassalou E.E., Kakkos G.A., Spanakis K., Zibis A.H., Marias K., Karantanas A.H.. ”Differentiation between subchondral insufficiency fractures and advanced osteoarthritis of the knee using transfer learning and an ensemble of convolutional neural networks”. Injury, 53(6): 2035-2040, 2022
Klontzas M.E., Jean J., Turner V.L., and Balthazar P., “Why and How to Increase Diversity in the Radiology Trainee Workforce.”, RadioGraphics, 42(3): E82-E85, 2022
Balthazar P, Klontzas M.E., Heng L.X.X. and Kearns C., “Cowden Syndrome”, RadioGraphics, 42(2): E44-E45, 2022.
Klontzas M.E., Lanier M.H., Sheikhbahaei S., and Bedi H., “Exposing the Hidden Curriculum in Radiology Training: A True 360° Evaluation.”, RadioGraphics, 42(1): E9-E11, 2022.
Klontzas M.E., Volitakis E., Aydingoz U., Chlapoutakis K. and Karantanas A.H. “Machine learning identifies factors related to early joint space narrowing in dysplastic and non-dysplastic hips.” Eur Radiol, 32(1):542-550, 2022.
Vassalou E.E.*, Klontzas M.E.*, Kostas Marias and Karantanas A.H. “Predicting long-term outcomes of ultrasound-guided percutaneous irrigation of calcific tendinopathy with the use of machine learning.” Skeletal Radiol, 51(2):417-422, 2022